
Hot electrons under quantization conditions: I. Kinematics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 8525

(http://iopscience.iop.org/0953-8984/8/44/007)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 04:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 8525–8537. Printed in the UK

Hot electrons under quantization conditions: I. Kinematics

B K Ridley and N A Zakhleniuk†
Department of Physics, University of Essex, Colchester, Essex CO4 3SQ, UK

Received 29 April 1996

Abstract. A detailed analysis of the kinematic peculiarities of the interaction of bulk acoustic
phonons with confined electrons in a quantum wire is peformed for intra- and inter-sub-band
transitions. Due to quantization of the electron motion in a quasi-one-dimensional wire a new
parameterεc = (χ0m

∗s2W0)
1/2 appears in the kinetic theory (m∗ is the electron effective mass,

s is the sound velocity,W0 is the quantum energy of the ground state andχ0 is some numerical
constant which depends upon the shape of the quantizing potential), characterizing the electron–
acoustic-phonon interaction. At low lattice temperaturesT0, whenT0 < εc, the intra-sub-band
interaction has a strong inelastic character for the majority of electrons (assuming that the mean
electron energy is also less thanεc). In the opposite case of high lattice temperatures,T0 > εc,
this interaction is always quasi-elastic for the majority of electrons because the mean electron
energy exceedsεc. Inter-sub-band scattering, on the other hand, is quasi-elastic at arbitrary
lattice temperatures. These kinematic peculiarities of the electron–acoustic-phonon interaction
are universal and, in general, do not depend on the physical nature of the quantizing field. It can
be an external quantizing magnetic field or size-quantizing electrostatic potential, resulting in the
confinement of electrons in a two-dimensional sheet or in a quantum wire, or confinement can be
realized due to both electrostatic and magnetic potentials combined. The discussed peculiarities
manifest themselves in novel kinetic properties of low-dimensional electron systems.

1. Introduction

A non-equilibrium electron gas in a system of reduced dimensionality such as quasi-one-
dimensional (1D) quantum wires (QWIs) provides fertile ground both for fundamental
physical studies and for an investigation of possible applications [1]. Electron transport
in QWIs can exhibit strongly nonlinear behaviour due to confinement of the motion of
particles in two directions, resulting in quantization of the corresponding degrees of freedom.
This reveals itself through the quantization of the electron energy spectrum, changes in the
density of states of electrons and changes in the probabilities of the electron–acoustic-phonon
interaction compared with those of usual three-dimensional (3D) systems. All the above-
mentioned characteristics play a crucial role in the electron kinetics of 1D QWIs because
the energy spectrum determines the electron group velocity and the scattering probabilities
determine the electron momentum and energy dissipation.

Several investigations have now been performed concerning electron transport in QWIs.
However, most of them were devoted to the particular situation in which an electron gas
is near to the thermodynamic equilibrium state (the linear response approximation). Others
were characterized by numerical or Monte Carlo simulation. In spite of the fact that an
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analytical solution provides general insight into the physics which underlies the experimental
situation, there have been almost no appropriate studies of non-equilibrium electron kinetics
(under the hot-electron approximation) in 1D QWIs based on the Boltzmann equation for
the electron distribution function.

The main goal of this paper and the following papers, II and III, is to perform an
analytical investigation of hot electrons in 1D QWIs and to obtain new distribution functions
for the comprehensive description of the kinetic properties of a 1D electron gas. We consider
here the case of a 1D electron gas in a QWI which interacts predominantly with bulk acoustic
phonons. Theraison d’être for this is that the effect of ionized impurity scattering can be
virtually eliminated at low temperatures by the physical separation of the impurity atoms
from the active QWI channel and, in addition, the electron–electron scattering in a 1D
QWI is suppressed due to conservation laws of momentum and energy in a 1D system:
electrons simply exchange energies and momenta during collisions. The latter is true in
the one-sub-band and two-particle approximations and this property forbids the description
of the non-equilibrium distribution of an electron gas in terms of an electron temperature
approximation, even if the electron density in a QWI is large. Optical phonon scattering
does not affect transport properties of 1D electrons at lattice temperatures below 40 K and
electric fields less than a few hundred V cm−1 for GaAs QWIs.

Here we propose to study the kinetic problem for a 1D electron gas corresponding
to the equivalent problem for a 3D electron gas, namely the classical situation resulting
in the so-called Davydov–Druyvestyn distribution function [2]. However, quantization
of the motion of electrons along one or two directions in the space leads to some new
peculiarities of electron–phonon interaction compared with the 3D case and we have to
analyse the physical process in detail. It is noteworthy that these peculiarities are universal
and, in general, do not depend on the physical nature of the quantizing field. For example,
it can be an external quantizing magnetic field applied to a 3D electron gas, or it can
be a size-quantizing electrostatic potential, resulting in the confinement of electrons in a
two-dimensional (2D) sheet or in a 1D QWI, or confinement can be realized due to both
electrostatic and magnetic potentials combined.

In this paper we describe the fundamental kinematics of the problem, beginning with the
analysis of the momentum conservation uncertainty principle in section 2 for the electron–
acoustic-phonon interaction. The electronic model is given in section 3. Although we
develop a general kinetic theory of the non-equilibrium electrons in a 1D QWI for an
arbitrary shape of the quantizing potential, the analytical calculations of the macroscopic
characteristics of the 1D electrons in the following papers II and III are performed for a
rectangular QWI with an infinitely deep quantum well. We will use this model here to
calculate the expression for the form factor. In section 4 the expressions for the scattering
rates for non-degenerate statistics are given. The specific kinematic features of the electron–
acoustic-phonon interaction in a QWI for intra- and inter-sub-band transitions are discussed
in section 5 and summarized in section 6. As mentioned above, the quantum confinement of
electrons introduces unusual elements into the kinematics which need to be fully understood
before one attempts a description of hot-electron effects. Solution of the Boltzmann equation
and its application to non-equilibrium electrons form the subject matters of the following
papers II and III.

2. Momentum conservation uncertainty

Historically, the first comprehensive investigation of kinematic peculiarities of the electron–
phonon interaction under the quantization of electron motion was published in the review
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article of Kubo, Miyake and Hashitsume [3] in connection with the study of galvanomagnetic
effects in a 3D electron gas in a strong (quantizing) magnetic field on the basis of Kubo’s
formula. Later these ideas were used for investigating the power loss in 2D [4] and 1D [5]
electron gases and for the calculation of the rate of acoustic-phonon scattering in QWIs [6].

In accordance with [3] the duration of a collisionτc between an electron and an acoustic
phonon cannot be given by the formulaτc ' h/ε||, whereε|| is the kinetic energy of the
electron in the free (non-quantized) direction(s), whenε|| becomes of the same order as
or smaller than some characteristic energy ¯hω∗

q of the acoustic phonon with wavevector
q. When ε|| is small, the electron velocity in the free direction is small as well, but in
such a case the durationτc is determined by the motion of the scatterers, namely acoustic-
phonons. Under quantization conditions the characteristic extensionl∗ of the wavepacket
of the electron becomes a factor. (In the case of the quantizing magnetic fieldH this is
the classical radius of the ground state Landau orbit,l∗ = h̄c/(eH); in the case of size
quantization this is the quantum well width,l∗ = L⊥). An acoustic phonon moves with
the velocity of sounds, so that the duration timeτc cannot be longer thanl∗/s. This is
the time during which the acoustic phonon crosses the quantum well where the electrons
are localized. The formulaτc ' h/ε||, cannot be applied whenh/ε|| > l∗/s, namely
ε2
|| 6 hs/l∗. On the other hand, from the quantum picture of the electron–acoustic-phonon

interaction it follows that the cross section of the interaction differs from zero only if the
phonon wavefunction ‘overlaps’ the electron wavepacket, namely when the component of
the wavevector of the phonon along quantization direction(s)q⊥ is smaller than or of the
same order asq∗

⊥ ≡ 2π/l∗,

q⊥ . q∗
⊥. (2.1)

The corresponding phonon energy is equal to ¯hω∗
q

∼= h̄sq∗
⊥ = 2πh̄s/ l∗. Hence, we may

expect to reveal some peculiarities of the electron–acoustic-phonon interaction if the kinetic
energy of electrons is within the rangeε‖ . h̄ω∗

q = 2πh̄s/ l∗. In particular, it is obvious
that this interaction will be strongly inelastic, because the electron energy is of the same
order as the acoustic phonon energy.

The electron wavefunction which describes the motion of the electrons along the
quantization direction(s) represents a packet of plane waves whose characteristic length
is l∗. This means that all electron states have an uncertainty for the wavevector along
the quantization direction(s)1κ⊥ ' κ⊥ ' 2π/l∗ and there is no precise momentum
conservation for the electron–acoustic-phonon interaction in this direction. From the
formal point of view, the appearance in the theory of a new parameter 2πh̄/ l∗, with
the dimensionality of momentum under the quantization condition, is responsible for new
peculiarities of the electron kinetics in such systems compared with 3D ones.

The Boltzmann kinetic equation for the distribution function in the general case is an
integro-differential equation. For the electron–acoustic-phonon interaction in the 3D case
this equation can be transformed to a pure differential equation [2] due to the existence of a
small parameter of quasi-elasticity of the electron–phonon interactionδ = h̄ωq/ε(κ) � 1,
if ε(κ) > 2m∗s2, where ε(κ) is the energy of the electron with the wavevectorκ and
m∗ is the electron effective mass. If the electron motion undergoes quantization,a similar
parameter does not exist, if the electron kinetic energy isε|| < 2πh̄s/ l∗, as is clear from the
previous discussion. As a result we need to solve an integro-differential kinetic equation.
The general situation depends on the relationship among appropriate values which include
an external electric fieldE, the lattice temperatureT and the parameter 2πh̄s/ l∗. We will
show when it is possible to use the quasi-elastic approximation for hot electrons in a 1D
QWI and will justify necessary criteria.
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3. The electronic model

Here we will develop the kinetic theory of the hot-electron gas in a quantum structure
with an arbitrary shape of the size-quantizing potential. However, for the calculation of the
kinetic coefficients of the electrons we will deal with a simple confinement configuration [7]
arising from, as an example, the elementary GaAs/AlAs potential well which is de-coupled
along the two transverse directions,y and z. An electron is confined between infinitely
deep potential interfaces aty = 0, y = Ly and z = 0, z = Lz, and is free to move in
the x direction of a rectangular QWI. Its normalized wavefunction, which vanishes at the
potential interfaces and which has usual periodic properties in thex-direction, is equal to

9np(κx, r) = 2

V
1/2

0

Uκx
(x) eiκxx sin(κyy) sin(κxz) (3.1)

0 6 y 6 Ly 0 6 z < Lz

where κy = nπ/Ly, κz = pπ/Lz, n and p are sub-band indices,V0 = LxLyLz is the
volume within which an electron moves,Lx is the QWI length,Uκx

(x) is a Bloch periodic
function,κx is the longitudinal electron wavevector andr ≡ (x, y, z).

The electron energy associated with the state9np(κx, r) is given by

εnp(κx) = ε||(κx) + n2W0y + p2W0z (3.2)

ε||(κx) = h̄κ2
x

2m∗ W0y,z = π2h̄2

2m∗L2
y,z

. (3.3)

HereW0 = W0y + W0z is the quantum energy of the ground electron state(n = p = 1).
The electron density of states in the sub-band (n, p) for a given spin and energy

εnp(κx) = ε is equal to

Nnp(ε) = 1

Lx

∑
κx

δ(εnp(κx) − ε) = (2m∗)
2πh̄

1/2

[ε − (n2W0y + p2W0z)]
−1/2. (3.4)

The total electron density of states for given spin and energyε is given by the sum

N(ε) =
∑
np

Nnp(ε). (3.5)

4. Scattering rates

In the semi-classical limit the rate of electron scattering in a 1D QWI from the initial state
(κx, ν) to the final state (κ ′

x, ν
′) due to the unscreened deformation potential interaction with

an acoustic phonon of wavevectorq is given by the Fermi golden rule

W±
νν ′(κx, κ

′
x, q) = 2π

h̄
|M±

νν ′(κx, κ
′
x, q)|2(Nq + 1

2 ± 1
2)δ(εν ′(κ ′

x) − εν(κx) ± h̄ωq). (4.1)

The upper sign corresponds to emission and the lower sign to absorption of the acoustic
phonon (the same everywhere below),ν ≡ (n, p), Nq = [exp(h̄ωq/T0)−1]−1 is the phonon
occupation number (withT0 = kBT for brevity), ωq = sq is the long-wave approximation
of the acoustic-phonon dispersion (the linear approximation imposes restrictionq � qB ,
whereqB is the maximum wavevector corresponding to the edge of the Brillouin zone) and
the square of the electron–phonon matrix element is equal to

|M±
νν ′(κx, κ

′
x, q)|2 = 42

ah̄q2

2ρV0ωq
|T ±

νν ′(κx, κ
′
x, q|2. (4.2)
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Here4a is the deformation acoustic potential,ρ is the density of the matter and the square
of the overlap integral (with the cell-periodic part taken to be unity) is given by

|T ±
νν ′(κx, κ

′
x, q)|2 = G2

νν ′(q⊥)δκ ′
x ,κx∓qx

(4.3)

whereG2
νν ′(q⊥) is the form factor which takes into account electron quantum confinement

in the 1D QWI and depends on the shape of the corresponding electrostatic potential. For
the infinite deep rectangular quantum well it is equal to

G2
νν ′(q⊥) =

∣∣∣∣ ∫ Ly

0

∫ Lz

0
e−i(qyy+qzz)8nn′(y)8pp′(z) dy dz

∣∣∣∣2

(4.4)

whereq⊥ ≡ (qy, qz) and

8nn′(y) = 2

Ly

sin

(
nπy

Ly

)
sin

(
n′πy

Ly

)
(4.5)

8pp′(z) = 2

Lz

sin

(
pπz

Lz

)
sin

(
p′πz

Lz

)
. (4.6)

The main distinction of the matrix element in equation (4.2) for a 1D QWI from that for
the 3D case [2] consists of the replacement of the Kronecker delta functionδκ′,κ±q, which
reflects momentum conservation in thex, y andz directions for 3D, by the overlap integral
from equation (4.3). If translational symmetry exists in they andz directions as well (the
3D case), then the functions8(y) and8(z) in equations (4.5) and (4.6) have the form

83D(y) = 2

Ly

exp[±i(κy − κ ′
y)y] (4.7)

83D(z) = 2

Lz

exp[±i(κz − κ ′
z)z] (4.8)

and as a result one obtains for the form factor

G2
3D(q⊥) = δκ ′

y ,κy∓qy
δκ ′

z,κz∓qz
. (4.9)

We will assume that the 1D QWI is embedded within another material with similar
lattice structure and elastic properties and that electrons interact with acoustic phonons which
extend over the large cavity of volumeV0 with coupling strengths characteristic of the bulk
semiconductor material [8]. That is why the electron–acoustic-phonon matrix element in
equation (4.2) for a 1D QWI is exactly transformed to the one for a 3D semiconductor [9]

|M±
3D(κ, κ′, q)|2 = 42

ah̄q2

2ρV0ωq
δκ′,κ∓q (4.10)

if we reconstruct the translation symmetry in the transverse directionsy andz, namely when
equation (4.9) applies.

Calculation of the form factor for a rectangular 1D QWI results in the following
expressions [8]:

G2
νν ′(q⊥) = G2

nn′(qy)G
2
pp′(qz) (4.11)

G2
rr ′(qα) = (π2rr ′)2 (qαLα/2)2 sin2(qαLα/2 + (π/2)(r + r ′))

[(qαLα/2)2 − (π2/4)(r − r ′)2]2[(qαLα/2)2 − (π2/4)(r + r ′)2]2
(4.12)

wherer = n, p andα = y, z.
This equation shows us that there is some characteristic value of the transverse

component of the phonon wavevector approximately equal to

qα0 = 2π/Lα. (4.13)
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The form factorG2
rr ′(qα) goes to zero ifqα > qα0, as is clear from figure 1. This means

that electrons in a 1D QWI interact with those acoustic phonons which have a transverse
component restricted by the condition

qα . qα0. (4.14)

It is obvious that the form factor of equation (4.12) for a 1D QWI as distinct from
the Kronecker delta function from equation (4.9) for the 3D case expresses a profound
modification of the electron–acoustic-phonon interaction for quasi-1D electrons.

Figure 1. The form factorG2
rr ′ (qα) as a function of the normalized transverse component of

the acoustic-phonon wavevectorqαLα/(2π) (α = y, z) for intra-sub-band (r = r ′ = 1) and
inter-sub-band (r = 1, r ′ = 2) transitions.

5. Kinematics of the electron–phonon interaction

As mentioned above, the quantum confinement of electrons introduces unusual elements into
the kinematics which need to be fully understood before one attempts a kinetic description
of the non-equilibrium electron effects. Some important peculiarities of the electron–
acoustic-phonon interactions in a 1D QWI can be revealed from the analysis of energy
and longitudinal momentum conservation which are described by the argument of the delta-
function of equation (4.1):

εν ′(κx ∓ qx) − εν(κx) ± h̄ωq = 0. (5.1)

A similar analysis for a 3D electron gas in a quantizing magnetic field was performed in
[10] and here we will follow this method.

By using equations (3.2) and (3.3) we obtain the following equation for theqx andq⊥
components of the wavevectorq of the acoustic phonon which interacts with the electron
of wave-vectorκx in sub-bandν:

q2
x ∓ 2κxqx ± 2m∗s

h̄
(q2

x + q2
⊥)1/2 − 2m∗s

h̄
(Wν − Wν ′) = 0 (5.2)

whereWν = n2W0y + p2W0z.
The character of the electron–acoustic-phonon interaction is quite different for intra-

sub-band (ν = ν ′) and inter-sub-band (ν 6= ν ′) transitions.
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5.1. Intra-sub-band scattering

For intra-sub-band scattering we have the equation

q2
x ∓ 2κxqx ± 2m∗s

h̄
(q2

x + q2
⊥)1/2 = 0 (5.3)

whose solution is given by

q⊥ = h̄|qx |
2m∗s

[(
qx ∓ 2κx + 2m∗s

h̄

) (
qx ∓ 2κx − 2m∗s

h̄

)]1/2

. (5.4)

From equation (5.4) we have the following relationship betweenq⊥ and |qx | (see
also [3, 10] for a 3D electron gas in a quantizing magnetic field):

q⊥ � |qx | (5.5)

for all possible values ofqx excluding a small region (of the order of a few units of 2m∗s/h̄
near to the pointsqx = ±2κx). For GaAs parameters (m∗ = 0.07m0, s = 5.14×105 cm s−1,
m0 is the mass of a free electron) 2m∗s/h̄ = 6.2 × 104 cm−1 and then 2κx � 2m∗s/h̄ for
electron kinetic energies higher than 10−2 meV. As a consequence we can neglect 2m∗s/h̄
inside the square brackets in equation (5.4) or, which amounts to the same thing, neglectq2

x

compared withq2
⊥ in the third term in equation (5.3). Then equation (5.4) is transformed

into the very simple form

q⊥ = ∓ h̄

2m∗s
(q2

x ∓ 2κxqx) = ∓ε‖(κx)

h̄s

[(
qx

κx

)2

∓ 2

(
qx

κx

)]
. (5.6)

It is of interest to compare equation (5.6) for a 1D electron gas with the analogous one
for a 3D electron gas (|κ| = κx) [11]. For the same approximation as above we obtain the
equation

(qx ∓ κ)2 + q2
⊥ = κ2 (5.7)

or, in more suitable form for comparison with equation (5.6):

q⊥ = (−q2
x ± 2κqx)

1/2. (5.8)

As we can see, the remarkable peculiarity of equation (5.6) is the presence of the small
parameter 2m∗s � h̄κx in the denominator of this equation, resulting in the inequality in
equation (5.5). This does not happen in equation (5.8). Figures 2(a) and (b) demonstrate
schematically the interdependence of the componentsqx and q⊥ for 1D and 3D electron
gases. Here we show separately the branches for forwards and backwards scattering. For
1D electrons the scattering is backwards or forwards depending on whether the electron
wavevector direction is reversed or not during the scattering event. For 3D electrons we call
the scattering backwards if the projection of the final state electron wavevectorκ′ = κ ∓ q
onto the direction of the initial state wavevectorκ is anti-parallel toκ and we call the
scattering forwards if this projection is parallel toκ. It is evident from figures 2(a) and (b)
that, for the 3D electron gas, we have the relationship

q⊥ ' |qx | ' κ (5.9)

which is distinctly different from equation (5.5) for a 1D QWI.
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Figure 2. A schematic representation of the interdependence between longitudinalqx and
transverseq⊥ components of the acoustic-phonon wavevectorq for interaction with electrons in
a 1D QWI (intra-sub-band scattering) and in a 3D semiconductor: (a) for the emission process
and (b) for the absorption process. It is assumed thatκx > 0 andh̄κx/(2m∗s) = 10 for the 1D
case, whereas|κ| = κx for the 3D case. The full line plots forwards scattering; the broken line
plots backwards scattering.

5.1.1. Spontaneous emission.From the analysis of the kinematics of the intra-sub-band
electron–phonon interaction in a 1D QWI it follows that,in principle, electrons can emit
acoustic phonons predominantly with wavevectors almost normal to the axis of the 1D
QWI in accordance with equation (5.5). However, any realization of this possibility for
the spontaneous emission process depends on the particular shape of theq-dependence of
the rate of electron scattering in equation (4.1). For the deformation acoustic potential the
square of the matrix element in equation (4.2) is proportional toq, |M±

νν ′(κx, κ
′
x, q)|2 ' q,

and as a result electrons interact more strongly with phonons with largeq, for which

q = (q2
⊥ + q2

x )
1/2 ' q⊥ (5.10)

in accordance with equation (5.5) and figure 1. For the piezoelectric acoustic potential we
have [9] for|Mνν ′(κx, κ

′
x, q)|2 ' 1/q. This means that electrons interact more strongly with

phonons with smallq; that is, the important regions are near to points (qx = 0, q⊥ = 0)
(for forwards scattering) and (qx = ±2κx, q⊥ = 0) (for backwards scattering), as is obvious
from figure 2. In the last case we cannot use equation (5.5). (This conclusion would have
to be revised in the presence of screening.)

Because we restrict our analysis here to the deformation interaction we will exploit
equations (5.5) and (5.10). In the emission process the energy of the emitted acoustic
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phonon from equation (5.6) is

h̄ωq = h̄sq ' h̄sq⊥ ' h̄s
ε‖(κx)

h̄s
= ε‖(κx). (5.11)

Consequently, the intra-sub-band interaction between electrons and acoustic phonons is
essentially inelastic in a 1D QWI (see also [3, 6, 10]), in contrast to the situation in a 3D
electron gas [11]. It should be particularly emphasized that this inference about inelasticity
of scattering is evident from the analysis of conservations laws in equation (5.1), taking
into account the shape of theq-dependence of the matrix element in equation (4.2). No
assumptions concerning the shape of the form factor in equation (4.3) have been made.

To justify when equations (5.5), (5.10) and (5.11) hold it is necessary to take into
account additional conditions deriving from the form factor. The maximum value of the
transverse component is equal to

q⊥0 = (q2
y0 + q2

z0)
1/2 ≡

(
8m∗W0

h̄2

)1/2

. (5.12)

Then for the spontaneous emission processes the form factor will not affect the electron–
acoustic-phonon interaction ifq⊥0 > ε‖(κx)/(h̄s), or, in terms of electron kinetic energy

ε‖(kx) < h̄sq⊥0 = (8m∗s2W0)
1/2. (5.13)

Becauseq⊥ < ε‖(κx)/(h̄s) < q⊥0 we can put in equation (4.12) for the form factor

G2
νν(q⊥) ' 1 (5.14)

for the spontaneous emission processes. Restrictions onqx andq⊥ for this case are given
only by the kinematics of the electron–phonon interactions, that is by equation (5.1).
Equation (5.13) thus defines the range of the electron energy within which the interaction
with acoustic phonons is inelastic.

On the other hand, if the electron energy is in the range

ε‖(κx) > (8m∗s2W0)
1/2 (5.15)

then the form factor will restrict the maximum value ofq⊥, (G2
νν(q⊥) 6= 1), and,

in accordance with equation (4.14) and previous analysis, we can putq⊥ ' q⊥0 in
equation (5.3) for the emission processes:

q2
x − 2κxqx + 2m∗s

h̄
(q2

x + q2
⊥0)

1/2 = 0. (5.16)

If q⊥0 > |qx | we have the solution

qx = κx ±
(

2m∗

h̄2

)1/2

[ε‖(κx) − (8m∗s2W0)
1/2]1/2 (5.17)

where the second term in the square brackets is relatively small, in accordance with
equation (5.15). Ifq⊥0 < |qx | then we have solutions

qx = 0 qx = 2κx ± 2m∗s
h̄

(5.18)

where the second term is small compared with 2κx . This means that, for arbitraryqx , we
can neglect the last term in equation (5.1). We conclude that the electron–phonon interaction
for the spontaneous emission processes is inelastic if the electron kinetic energy is defined
by equation (5.13) and quasi-elastic if it is defined by equation (5.15).
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5.1.2. Absorption and stimulated emission.The analysis above is adequate for spontaneous
emission but for the absorption and stimulated emission processes there is an additional
restriction onq. This is due to the proportionality of the corresponding scattering rate in
equation (4.1) to the phonon occupation numberNq, which, to be other than negligible,
entails the condition

(q2
x + q2

⊥)1/2 . T0

h̄s
. (5.19)

Note that, for a largeq(q > T0/(h̄s)), Nq has an exponentially small value. The character
of these processes depends on the relationship betweenq⊥0 andT0/(h̄s). If q⊥0 < T0/(h̄s),
or

T0 > (8m∗s2W0)
1/2 (5.20)

then the restriction embodied in equation (4.14) (namely thatq⊥ . q⊥0) is more severe
than is the one from equation (5.19). Hence, the electron–phonon interaction for the
absorption and stimulated emission processes has exactly the same peculiarities as for the
spontaneous emission processes which were described above. Only the additional large
factor Nq ≈ T0/(h̄sq) appears in equation (4.1) for the processes discussed compared with
the spontaneous emission process.

On the other hand, ifq⊥0 > T0/(h̄s), or

T0 < (8m∗s2W0)
1/2 (5.21)

then the restriction equation (5.19) is more severe than equation (4.14). Because in this case
q . T0/(h̄s) < q⊥0, we can use the approximation of equation (5.14) for the form factor
for arbitrary electron kinetic energy and, as a result, all peculiarities of electron–phonon
interaction for the absorption and stimulated emission processes are determined only by the
energy and momentum conservation, namely by equation (5.3). (Of course, the factorNq

has to be taken into account in equation (4.1)). A similar analysis to that performed for
spontaneous emission processes shows us that the last term in this equation is important if

ε‖(κx) < T0 (5.22)

and unimportant if

ε‖(κx) > T0. (5.23)

This implies that, for the lattice temperatures defined by equation (5.21), the electron–
acoustic-phonon interaction for absorption and stimulated emission processes is inelastic
for the electron kinetic energy defined by equation (5.22) and it is quasi-elastic for the
energy defined by equation (5.23), an implication that is physically clear if we remember
that (in accordance with equation (5.19)) the maximum value of the absorbed phonon energy
is h̄ωq . T0. Figure 3 shows the corresponding lattice temperature and the electron energy
regions with inelastic and quasi-elastic scattering for the spontaneous emission processes
and stimulated emission and absorption processes.

To finish this kinematic analysis of the intra-sub-band electron–phonon scattering let
us define the range of the electron energy within which the relationship equation (5.5)
(q⊥ � |qx |) betweenq⊥ and qx is satisfied. It is obvious from equation (5.6) that
equation (5.5) is realized automatically within the energy range in equation (5.13), but
the real energy range within which equation (5.5) holds is wider than this. In fact, for an
electron energy defined by equation (5.15), within which the electron–phonon interaction is
quasi-elastic, we have for the spontaneous emission process from equation (5.3)|qx | ' 2|κx |
and from equation (4.14)q⊥ ' q⊥0. Thenq⊥ > |qx | for a kinetic energy given by

ε‖(κx) < W0. (5.24)
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Figure 3. Regions of the lattice temperaturesT0 and the electron energiesε‖(κx) with inelastic
and quasi-elastic electron–acoustic-phonon interaction.

The same is true for the absorption and stimulated emission processes if the lattice
temperature is defined by equation (5.20). Electrons with kinetic energy in the range defined
by equation (5.24) will predominantly emit and absorb acoustic phonons with wavevectors
almost perpendicular to the QWI axis.

For the lattice temperature defined by equation (5.21) we will haveq⊥ > |qx | for the
absorption and stimulated emission processes if the electron energy is in the range

ε‖(kx) <
T 2

0

8m∗s2
. (5.25)

This is true because, for an electron energy defined by equation (5.22), the inequality
q⊥ > |qx | is automatically realized due to equation (5.6), whereas for the energy range
from equation (5.23) we have|qx | ' 2|κx | andq⊥ ' T0/(h̄s), resulting in equation (5.25).

For the electron energies which are outside the regions defined in equations (5.24) and
(5.25), we have the opposite relationship betweenq⊥ and|qx |, namelyq⊥ < |qx |. Electrons
will predominantly interact with acoustic phonons with wavevectors along the QWI axis.
Note that this is the case when the momentum conservation approximation (MCA) [8] can
be used with high accuracy.

Note that the energy region defined by equation (5.13) exists for intra-sub-band scattering
within every sub-band and thatε‖(κx) is the electron kinetic energy calculated from the
bottom of the corresponding sub-band. For upper sub-bands this region will be slightly
increased compared with the first sub-band due to the increased magnitude ofq⊥0 (as
follows from equation (4.12) and figure 2). The same is true for equations (5.24) and
(5.25).
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5.2. Inter-sub-band scattering

For inter-sub-band (ν 6= ν ′) scattering we can neglect the phonon energy ¯hωq in
equation (5.1) for all transitions. In fact, because the minimum value for the difference
|Wν − Wν ′ | in equation (5.2) is|Wν − Wν ′ |min > W0 and

2m∗

h̄2 |Wν − Wν ′ |min >
q2

⊥0

4

then we can neglect(2m∗/h̄)(q2
x +q2

⊥)1/2 compared either with the second or with the fourth
term in equation (5.2):
if q⊥ > qx then

2m∗s
h̄

(q2
x + q2

⊥)1/2 ' 2m∗s
h̄

q⊥ � q2
⊥0

4
if qx > q⊥ then

2m∗s
h̄

(q2
x + q2

⊥)1/2 ' 2m∗s
h̄

|qx | � 2|κxqx |.
As a result, inter-sub-band scattering in a 1D QWI isalways quasi-elastic; that is,

h̄ωq � [εν ′(κx ∓ qx), εν(κx), |Wν − Wν ′ |] (see a similar result for a 3D electron gas in
a quantizing magnetic field in [10]). Thus the statement in [6] that the inter-sub-band
transitions due to acoustic-phonon scattering are even more inelastic (compared with intra-
sub-band scattering) is not true.

Equation (5.2) is transformed to

q2
x ∓ 2κxqx − 2m∗

h̄2 (Wν − Wν ′) = 0 (5.26)

and its solutions are given by

qx = κx ±
(

κ2
x + 2m∗

h̄2 (Wν − Wν ′)

)1/2

(5.27)

for emission and

qx = −κx ±
(

κ2
x + 2m∗

h̄2 (Wν − Wν ′)

)1/2

(5.28)

for absorption. Recall that the electron wavevectorκx corresponds to the kinetic energy in
the sub-band with indexν.

For emission processes it follows from equation (5.27) that, whenν > ν ′, we have
|qx | ' q⊥0 for backwards and forwards scattering ifε‖(κx) � (Wν − Wν ′). Alternatively, if
ε‖(κx) � (Wν −Wν ′), we have|qx | ' 2|κx | for backwards and|qx |2 ' q2

⊥0/|κx | for forwards
scattering. Sinceq⊥ ' q⊥0 it means that, in the first case, electrons will emit acoustic
phonons with an isotropic distribution (|qx | ' q⊥ ' q⊥0), whereas, in the second case, the
phonon wavevector is along the QWI axis (q ' |qx | ' 2|κx | > q⊥) for backwards scattering
and normal to the QWI axis (q ' q⊥ ' q⊥0 > |qx |) for forwards scattering. For inter-sub-
band transitions withν < ν ′ the same is true for the energy rangesε‖(κx) & |Wν −W ′

ν | and
ε‖(κx) � |Wν − Wν ′ |, respectively.

A similar picture of the inter-sub-band transition is valid for the absorption processes in
accordance with equation (5.28) for high lattice temperatures, defined by equation (5.20).
For low lattice temperatures, from equation (5.21) the inter-sub-band transitions are
suppressed due to the small exponential factorNq ' exp(−h̄sq⊥0/T0).

Clearly, the peculiarities of the electron–acoustic-phonon interaction in a 1D QWI
previously described will bring about a radical modification of the hot-electron kinetics
compared with that in a 3D electron gas.
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6. Summary

In this paper we have described the basic kinematics of the interaction of bulk acoustic
phonons with confined electrons in a quantum wire. Althoguh we have specialized the
discussion to the interaction via a deformation potential, much is applicable to piezoelectric
interactions. Our assumption of strong confinement for the electrons allowed us to make
a sharp distinction betweenq⊥ and qx , the phonon wavevector components perpendicular
to and along the QWI, respectively, and to introduce a new characteristic energyεc =
(8m∗s2W0)

1/2. For a GaAs rectangular QWI withLy = Lz ≡ L⊥ = 50 Å, m∗ = 0.07me

ands = 5.14× 105 cm s−1, we obtainW0 = π2h̄2/(m∗L2
⊥) = 430 meV,m∗s = 0.01 meV

andεc = 6 meV' 70 K, soεc is typically of comparable magnitude with electron energies.
Whereasqx is restricted by momentum conservation along the axis,q⊥ is restricted by
energy conservation and by the form factor to be belowq⊥0. Our characteristic energy
is just εc = h̄sq⊥0 and it follows that, ifε‖ < εc, the processes involving spontaneous
emission are inelastic, whereas ifε‖ > εc they are quasi-elastic. This will be true also of
processes involving absorption and stimulated emission provided that equipartition holds,
that isT0 > h̄sq⊥0. If equipartition does not hold, the maximum phonon energy isT0 for the
stimulated processes and so the conditions for inelastic or quasi-elastic scattering become
ε‖ < T0 and ε‖ > T0, respectively. All these conditions for intra-sub-band scattering are
summarized in figure 3. For inter-sub-band scattering the phonon energy is always much
smaller than the electron energies involved and so all such processes as quasi-elastic.
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